[a;b] باستعمال طريقة: لإثبات وجود حلول معادلة على مجال مبر هنة القيم المتوسطة نتبع الخطوات التالية:

- f(x) = k نكتب المعادلة على الشكل •
- نتحقق من استمرارية الدالة f على المجال [a;b]
- f(b) و f(a) بين محصور بين ملاحظة: إذا كانت الدالة f رتيبة تماما على المجال [a;b] فان

 $f(x) = x^3 - x$: المعرفة باتكن الدالة f المعرفة ب بين أن المعادلة f(x) = -3 تقبل على الأقل حلا α من المجال

*التمرين 02

 $f(x) = x^5 + x^3 - 1$: لتكن الدالة f المعرفة ب بين أن المعادلة f(x) = 0 تقبل على الأقل حلا محصور بين 0 و 1

 $x^3 - 5x^2 + 3x + 4 = 0$ بين أن المعادلة أ ـ تقبل على الأقل حلا محصور بين 1 و 2 . [-1;0] ب - تقبل على الأقل حلا في المجال

*التمرين 04

 $f(x) = x^5 + 2x - 1$: لتكن الدالة f المعرفة ب $\mathbb R$ بين أن الدالة f متزايدة تماما على f

[0,1] يين أن المعادلة α في المجال f(x)=0 تقبل حل وحيد α في المجال (2

برهن باستعمال مبرهنة القيم المتوسطة أن المعادلة:

[-3;-2] تقبل على الأقل حلا في المجال $x^3 - 4x = -2$

 $2x^3 - 5x^2 - 3 = 0$: بين أن المعادلة $\left[\frac{5}{2},3\right]$ تقبل حلا وحيدا في المجال

التمرين 07 :

 $f\left(x\right) = \frac{1}{3}x^3 + x^2 - 2$: لتكن الدالة f المعرفة ب $[0,+\infty[$ بين أن f متزايدة تماما على المجال ا

 $[1;+\infty[$ بين أن المعادلة f(x)=0 تقبل حل وحيد α في المجال - بين - بين أن $\, lpha \,$ ينتمي إلى المجال $\, [1,1\,\,;\,\,1,3\,] \,.$

 $f(x) = 2x^3 - 3x^2 - 1$ المعرفة بـ 1 <u>08</u> لتكن الدالة المعرفة المعرفة المعرفة الدالة المعرفة المعرف $-\infty$ احسب نهایة f عند $\infty+$ و

ادرس اتجاه تغیر الدالة f ثم شكل جدول تغیراتها (2

بين أن المعادلة f(x) = 0 تقبل حل وحيد α من المجال (3

f(x) استنتج حسب قیم x إشارة (4

التمرين 09:

 $f(x) = x^4 - x^2 - 2$ بـ : \mathbb{R} بالمعرفة على المعرفة على ادرس اتجاه تغير f وشكل جدول تغيراتها f[1,2] في α في آيت حلا وحيدا α في f(x) = 0التمرين 10: يعطى جدول تغيرات دالة f كما يلى:

. f(x) = 0 last the last three last f(x) = 0

 $f\left(x\right)$ من خلال جدول تغيرات الدالة f شكل جدول إشارة التمرينf يعطى جدول تغيرات الدالة f كما يلى:

f(x)

ما هو عدد حلول المعادلة f(x) = 0 ? برر.

 $f\left(x\right)$ من خلال جدول تغيرات الدالة f شكل جدول إشارة $\left(2\right)$

HELIB ABDELKADER أحليب عبد القادر

 $\frac{01}{1}$ نعتبر الدالة f المعرفة على $\mathbb R$ بـ

$$\begin{cases} f(x) = x^2 + 2 &, x \in] -\infty, 0[\\ f(x) = \frac{x+2}{x+1} &, x \in [0, +\infty[$$

- $-\infty$ احسب نهایة f عند $\infty+$ و $-\infty$.
- $\lim_{x \longrightarrow 2} f(x) = \lim_{x \longrightarrow -1} f(x)$ (2)
- ? احسب $\lim_{x \stackrel{<}{\longrightarrow} 0} f(x)$ و $\lim_{x \stackrel{>}{\longrightarrow} 0} f(x)$ ، $\lim_{x \stackrel{>}{\longrightarrow} 0} f(x)$ ، $\lim_{x \stackrel{>}{\longrightarrow} 0} f(x)$ احسب (3) التمرين 02_

: كما يلي المعرفة على المجال [-2;3 كما يلي المعرفة ا

$$\begin{cases} f(x) = -x+1 & ; x \in [-2;1[\\ f(x) = 2x-1 & ; x \in [1;3[\\ \end{cases}]$$

تمثيلها البياني في مستوي منسوب إلى معلم متعامد ومتجانس. $(C_{_f})$

- ب مثل (C_f) ، هل تقبل الدالة f نهاية عند (C_f) مثل (1
- على يمكن رسم منحني الدالة f دون رفع القلم ?
- (3) ab lk-lk f aminor absolute f about f about f
 - 4) اذكر مجالا تكون الدالة f مستمرة عليه .

مبر هنة القيم المتوسطة

مبر هنة القيم المتوسطة (تقبل دون برهان)

[a;b] مبرهنة: f دالة معرفة و مستمرة على مجال

من أجل كل عدد حقيقي k محصور بين $f\left(a\right)$ و رجد من أجل م $f\left(c\right)=k$ على الأقل عدد حقيقي c محصور بين a و a بحيث حالة خاصة: إذا كانت f دالة مستمرة على مجال [a;b] وكان و ($f\left(b\right)$ و $f\left(a\right)$ و العدد $f\left(a\right)$ محصور بين $f\left(a\right) \times f\left(b\right) < 0$ $f\left(c\right)=0$ بحيث b و a محصور بين م محصور على الأقل عدد حقيقي

- الجلفة

 $(0\,;i\,\;;ec{j})$ وليكن (Γ) تمثيلها البياني في معلم متعامد $^{\hat{}}$:] $_{-1}$, $^{\hat{}}+\infty$ رن المجال $_{x}$ من المجال $_{+}$ f هي الدالة المشتقة للدالة $f'(x) = \frac{g(x)}{(x+1)^3}$

ب) عين دون حساب $\lim_{x\to\alpha} \frac{f(x)-f(\alpha)}{x-\alpha}$ وفسر النتيجة بيانيا.

$$\lim_{x \to +\infty} \left[f(x) - (x+1) \right] \stackrel{\circ}{=} \lim_{x \to -1} f(x) : -\infty$$

وفسر النتيجتين بيانيا

f شكل جدول تغيرات الدالة f

lpha pprox 0.26 نأخذ (3

أ) عين مدور $f(\alpha)$ إلى $f(\alpha)$

 $oldsymbol{arphi}$) ارسم المنحنى (Γ)

$$f(x) = x + a + \frac{b}{(x+1)^2}$$
: على الشكل $f(x)$ على الشكل (أ – 4

حيث a و d عددان حقيقيان. $-1;+\infty$ الدالة الأصلية للدالة f على المجال F عين $+\infty$ F(1) = 2 والتي تحقق

بكالوريا 2021 علوم تجريبية الموضوع 1 التمرين الرابع: (07 نقاط)

 $g(x) = 2x^3 - 2x^2 + 3x - 2$:ب \mathbb{R} معرّفة على g معرّفة على (I

ا بيّن أنّ الدّالة g متزايدة تماما على $\mathbb R$.

 $0,7 < \alpha < 0,8$: قبن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا α يُحقِّق (2 g(x) ب. استنتج حسب قيم العدد الحقيقي x إشارة

الاستاذ: حليب عبد القادر

g(x) نعتبر الدالة العددية g المعرّفة على $\mathbb R$ كما يلي: 12g

ادرس اتجاه تغير الدالة g .

ين أنّ المعادلة g(x)=0 تقبل حلا وحيدا α حيث [-1,48;-1,47] ثقب العدد (2 g(x) الحقيقي x إشارة

 $f(x) = \frac{x^3 - 6}{x^2 + 2}$ کما یلي: \mathbb{R} کما یلي: (II) نعتبر الدالة العددیة f

 $f(\alpha)$ بيّن أنّ $f(\alpha) = \frac{3}{2}$ ثم استنتج حصرا للعدد (3

و ليكن (C_f) تمثيلها البياني في المعلم $f(x) = \frac{1-x}{x^3+1}$. (4cm : المتعامد و المتجانس $\left(O\;;I\;,J\;\right)$ الوحدة

 $\lim_{x \to +\infty} f(x)$ بين أن $\lim_{x \to +\infty} f(x) = +\infty$ ثم أحسب (1

أعط تفسيرا بيانيا للنتيجتين.

$$f'(x) = \frac{g(x)}{(x^3+1)^2}$$
 ']-1;+∞[من کل x من کل بین أنه من کل (2

(3) استنتج اتجاه تغیر الداله f ثم شکل جدول تغیراتها

.0ماس المنحني (C_f) عين معادلة لـ (Δ) مماس المنحني (4

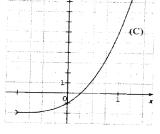
،]-1;+1[من أجل كل x من أبه من أحقق أنه من أجل كل x

$$f(x)-(-x+1)=\frac{x^3(x-1)}{x^3+1}$$

بعد دراسة إشارة $f\left(x\right)-\left(-x+1\right)$ استنتج وضعية المنحني (6

بالنسبة للمماس (Δ) . ماذا تلاحظ $(C_{_f})$

 (C_f) ارسم المستقيم (Δ) و المنحني (7

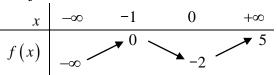

التمرين 16 مكالوريا2008علوم تجريبية 2

المنحنى (C) المقابل هو التمثيل البياني للدالة العددية g المعرفة $g(x) = x^3 + 3x^2 + 3x - 1$: على المجال $-1; +\infty$ كما يأتي

1)-أ) بقراءة بيانية شكل جدول g(0) تغيرات الدالة g وحدد وg(0) $g(\frac{1}{2})$ وإشارة

 α علل وجود عدد حقیقی α من $g(\alpha) = 0$ المجل $[0; \frac{1}{2}]$ يحقق

ج) استنتج إشارة g(x) على $-1;+\infty$ المجال



بما يأتي : -1 هي الدالة العددية المعرفة على المجال -1 ب $+\infty$ بما يأتي :

www.math-helib.com

$$f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$$

التمرين12: يعطى جدول تغيرات دالة f كما يلي:

أعط في كل حالة من الحالات التالية عدد حلول المعادلة المقترحة في $\mathbb R$:

$$f(x) = -0.5$$
 (3 ، $f(x) = -5$ (2 ، $f(x) = 7$ (1) التمرين 13*: نعرين 106ص

 $\left[a\,;b
ight]$ دالة مستمرة على المجال f

$$f(b) > b^2$$
 و $f(a) < ab$

. $f\left(c\right)=bc$ بين أنه يوجد عدد حقيقي م من $\left[a;b\right]$ من

 $f\left(1\right)=1$ تمرين 107 من تمرين 14 مستمرة على المجال $f\left(0\right)=1$ بحيث $f\left(0\right)=0$ و $f\left(1\right)=1$

 $f(c) = \frac{1-c}{1+c}$ بین أنه یوجد عدد حقیقي c من [0;1] بین أنه یوجد

التمرين 15 (من الكتاب المدرسي)

: g المعرفة على المجال g بنعتبر الدالة المعرفة على المجال المعرفة على المجال

 $g(x) = 2x^3 - 3x^2 - 1$

و ليكن $\left(C_{_g}
ight)$ تمثيلها البياني في معلم.

ا لاحظ $\left(C_{_{g}}
ight)$ على شاشة الحاسبة البيانية (1

ثم ضع تخمينا حول عدد جذورها و حول إشارتها.

2) أدرس تغيرات الدالة g ثم شكل جدول تغيراتها.

1,7 و α محصورا بين أن المعادلة $g\left(x\right)=0$ تقبل حلا وحيدا α محصورا بين 3

.] $-1;+\infty$ على $g\left(x\right)$ على (4

نعتبر الدالة f المعرفة على المجال $]-1;+\infty[$ ب