

دورة: 2019

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة، لغات أجنبية

اختبار في مادة: الرياضيات المدة: 20 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (06 نقاط)

b = 2969 و a = 2019 و طعددان طبیعیان حیث: a = a = 2019

.7 عيّن باقي القسمة الاقليدية لكل من العددين a و dعلى a

ب) استنتج أن العددين a و a متوافقان بترديد a

 $9a + b \equiv 0[7]$ بيّن أنّ: (2

 $2^{2969} imes a^{2969}$ تحقق أنّ: [7] = 2 ثم استنتج باقي القسمة الاقليدية للعدد $2^{2969} imes a^{2969}$ على $2a \equiv -1$

. $b^{n} + an + 2 \equiv 0$ [7] عيّن قيم العدد الطبيعي n حيث (4

التمرين الثانى: (06 نقاط)

 $u_n = \frac{2}{5}n - 1$:ب \mathbb{N}^* بنالیة عددیة معرفة علی (u_n)

 u_1 بيّن أنّ المتتالية (u_n) حسابية أساسها $\frac{2}{5}$ يطلب حساب حدها الأول (1

2) عين رتبة الحد الذي قيمته 575.

 $S = u_1 + u_2 + \dots + u_{1440}$: حيث $S = u_1 + u_2 + \dots + u_{1440}$ احسب قيمة المجموع

. $v_n = 4^{5u_n+6}$: كما يلي \mathbb{N}^* كما المتتالية المعرفة على (v_n

أ) بيّن أن المتتالية (v_n) هندسية يطلب تعيين أساسها وحدها الأول v_1

 $S_n = v_1 + v_2 + ... + v_n$: المجموع المجموع (ب

التمرين الثالث: (08 نقاط)

. عدد حقیقی، $f(x) = a - \frac{1}{x+2}$ بـ: $\mathbb{R} - \{-2\}$ عدد حقیقی f (I

اختبار في مادة: الرياضيات // الشعبة: آداب وفلسفة، لغات أجنبية / بكالوريا 2019

- . $(O; \vec{i}, \vec{j})$ المتعامد و المتجانس إلى المعلم المتعامد و المتجانس (C_f)
- . $\frac{1}{2}$ عيّن قيمة a حتى يقطع المنحنى (C_f) حامل محور التراتيب في النقطة ذات الترتيبة a
 - II) نضع a=1
 - $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ ثم $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ و رأ (1) احسب (1) فسر النتائج المحصل عليها بيانيا.
 - .]-2 ; $+\infty$ [و] $-\infty$; -2[و] $-\infty$; -2 و] $-\infty$) أ) بيّن أن الدالة f متزايدة تماما على كل من المجالين f .
- (C_f) عيّن إحداثيي A نقطة تقاطع المستقيمين المقاربين، ثم بيّن أنها مركز تناظر للمنحنى (3
 - . 0 الماصلة (C_f) المنحنى (Δ) الماصلة (Δ) اكتب معادلة للمماس
 - . (C_f) ثمّ المنحنى (Δ) أحسب والمماس (Δ) ثمّ المنحنى المستقيمين المقاربين والمماس (Δ) أحسب
 - $1 \le \frac{1}{x+2}$ التالية: x = 1 التالية: (6

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (06 نقاط)

b = 1441 ، a = 2019 و d العددان الطبيعيان حيث a

- **1**] : تحقق أنّ (1 [17] . 13 ـ **1**
- متوافقان بترديد 17، ثمّ استنتج باقي القسمة الإقليدية للعدد b على 17. a : a أنّ a : a
 - . $3a^2 \times b^2 + 14 \equiv 0$ [17] تمّ استنتج أنّ $a \times b \equiv -1$ [17] بيّن أنّ (3
 - 4) أدرس تبعا لقيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 13^n على 17.
 - . $2019^{1954} + 169^{2n} + 1441^{2969} 13 \equiv 0[17]$: بيّن أنّ (5
 - . $n + 1954^{1962} + 16 \equiv 0$ [17] عيّن قيم العدد الطبيعي n التي تحقق (6

التمرين الثاني: (06 نقاط)

- . r المتتالية الحسابية التي حدها الأول u_0 و أساسها
 - . u_1 عيّن ، $u_0 + u_1 + u_2 = 6$: عيّن (1
- (u_n) عين الحد الأول u_0 ، ثم استنتج قيمة $u_0 3u_1 = -10$ عين الحد (2 عين الحد الأول علم النتالية u_0
 - n اكتب عبارة الحد العام u_n بدلالة عبارة الحد
 - . $u_n = 2018$ عيّن قيمة n حتى يكون (4
 - (u_n) أحسب الحد الخامس عشر للمتتالية
 - $S_n = u_0 + u_1 + u_2 + \dots + u_n$: غيث $S_n = u_0 + u_1 + u_2 + \dots + u_n$ أحسب بدلالة n المجموع (5
 - $S_n = 96$: عيّن العدد الطبيعي n حتى يكون (6

التمرين الثالث: (08 نقاط)

- $f(x) = 2x^3 + 3x^2 5$: ب \mathbb{R} بالدالة العددية المعرفة على $f(x) = 2x^3 + 3x^2 5$
- $(O; ec{i} \,, ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f)
 - . $+\infty$ عند ∞ و عند ∞ الدالة f عند ∞
- (f الدالة المشتقة الأولى للدالة f). \mathbb{R} الدالة المشتقة الأولى للدالة f (f) أحسب (f) أحسب (f) ، ثم شكل جدول تغيرات الدالة f0 ، ثم شكل جدول تغيرات الدالة f1 ، ثم شكل جدول تغيرات الدالة f3 ، ثم شكل جدول تغيرات الدالة f4 ، ثم شكل جدول تغيرات الدالة f5 ، ثم شكل جدول تغيرات الدالة f6 ، ثم شكل جدول تغيرات الدالة f8 ، ثم شكل جدول تغيرات الدالة المشتقة الأولى الدالة f8 ، ثم شكل جدول تغيرات الدالة الدالة الدالة المشتقة الأولى الدالة f8 ، ثم شكل جدول تغيرات الدالة الدا

اختبار في مادة: الرياضيات // الشعبة: آداب وفلسفة، لغات أجنبية / بكالوريا 2019

- - . بين نقط تقاطع المنحنى $\left(C_f
 ight)$ مع حامل محور الفواصل
- بيّن أنّ المنحنى $\binom{C_f}{2}$ يقبل نقطة انعطاف A فاصلتها $\binom{1}{2}$ ثم أكتب معادلة لـ $\binom{1}{2}$ مماس المنحنى $\binom{C_f}{2}$ عند النقطة $\binom{C_f}{2}$ عند النقطة $\binom{C_f}{2}$
 - . (C_f) والمنحنى (T) انشئ المماس ($\mathbf{5}$
 - . $f(x) \ge 0$: حل بيانيا المتراجحة (6

انتهى الموضوع الثاني

العلامة		/ 1 km - 1 \ 7 1 \ \ 1 \ - 1 \ -			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
التمرين الأول: (06 نقاط)					
		أ- تعيين باقي قسمة a و b على a :			
	2×0.75	$b \equiv 1[7] \qquad a \equiv 3[7]$			
02.5	2×0.5	$a-3b\equiv 0$ [7] ومنه: $a=3b$ [7] -ب			
01	+0.5 0.5	$9a + b \equiv 0$ [7] تبیان أن (2			
1.5	0.5	$2a \equiv -1$ [7] التحقق أن $[7]$			
	1	$.6$ الباقي هو $2^{2969} imes a^{2969}$ على 7 . الباقي هو			
01	+0.25	$b^n + a.n + 2 \equiv 0$ تعيين قيم العدد الطبيعي n بحيث: $[7]$			
	0.5	n = -1[7] ومنه: $3n + 3 = 0[7]$			
		$n = 7k + 6$; $k \in \mathbb{N}$			
		وبالتالي: أ و			
	0.25	$n = 7k - 1$; $k \in \mathbb{N}^*$			
التمرين الثاني: (06 نقاط)					
	1+1	تبيان أن المتتالية (u_n) حسابية أساسها $r=rac{2}{5}$ تقبل أي طريقة صحيحة)			
03	+0.5 0.5	$u_1 = \frac{-3}{5} : كدها الأول:$			
1.25	2×0.5	2) تعيين رتبة الحد الذي قيمته 575.			
	0.25	ومنه: $n = 1440$ وبالتالي الرتبة هي $\frac{2}{5}n - 1 = 575$			
	×0.25	S = S			
0.5	×0.25 2	$S = 413568 \qquad S = \frac{1440}{2} (u_1 + u_{1440})$			
01.25	0.25	اً د $\left(v_{n}\right)$ هندسية $\left(v_{n}\right)$ هندسية			
	2×0.25	الاساس 16 والحد الأول 64			
	×0.25 2	$S_n = v_1 + v_2 + + v_n = \frac{64}{15} (16^n - 1)$ ب- حساب المجموع			

العلامة					
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
التمرين الثالث: (08 نقاط)					
0.5	2×0.25	$a=1$ ومنه: $f(0)=\frac{1}{2}$.			
02.5	0.5×4	$\lim_{x \to -\infty} f(x) = 1 \cdot \lim_{x \to -2} f(x) = +\infty \cdot \lim_{x \to -2} f(x) = -\infty -1$ $\lim_{x \to +\infty} f(x) = 1$			
	2×0.25	y=1 ب- للمنحنى م.م. مواز لـ (xx') معادلته $x=-2$ و م.م. مواز لـ (yy') معادلته			
1.5	2×0.5	$f'(x) > 0$ $f'(x) = \frac{1}{(x+2)^2} - 1$ (2)			
	0.5	ب- جدول التغيرات.			
	0.25	A(-2;1) إحداثيي نقطة تقاطع المستقيمين المقاربين: (3			
0.5	0.25	$\cdot \left(C_{_f} ight)$ مرکز تناظر للمنحنی - تبیان أن A مرکز مرکز مرکز مرکز A			
0.5	0.5	$(\Delta): y = \frac{1}{4}x + \frac{1}{2}$ معادلة المماس: (4			
02	0.5	f(-1)=0 (5			
	2×0.5	(T) رسم المقاربين والمماس (T)			
	0.5	$\left(C_{f} ight)$ رسم المنحنى $-$			
0.5	0.5	$S =]-2;-1]$ ، $f(x) \le 0$ معناه $1 \le \frac{1}{x+2}$ (6			

العلامة		/ *1**ti = . * *ti)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (06 نقاط)
01	01	a = 13[17] : التحقق أنّ (1
01.5	01	بيان أنّ $a:b$ و a متوافقان بترديد 17 $a:a$
	0.5	$b \equiv 13[17]$
01.5	0.75	$a \times b \equiv -1[17]$ ومنه $a \times b \equiv 16[17]$ ومنه $a \times b \equiv 169[17]$ (3
	0.75	$3a^2 \times b^2 + 14 \equiv 0$ [17] ومنه $a^2 \times b^2 \equiv 1$ [17]
01	0.5×2	4) دور بواقي القسمة هو 4 والبواقي هي : 1; 13; 16 و 4
0.5	0.25	ومنه $13^{1954} + (-1)^{2n} + 13^{2969} - 13 = 16 + 1 + 13 - 13[17]$ (5
	0.25	$2019^{1954} + 169^{2n} + 1441^{2969} - 13 = 0[17]$
0.5	0.25	ومنه $n+1+16 \equiv 0[17]$ يكافئ $n+1954^{1962}+16 \equiv 0[17]$ ومنه $n+171$
	0.25	$n = 17k / k \in \mathbb{N}$
01	01	$u_1 = 2$ (1 نقاط) $u_2 = 2$ (1
02	2×1	$r = 4 \cdot u_0 = -2 \qquad (2)$
01	01	$u_n = 4n - 2 \qquad \textbf{(3)}$
01	2×0.5	$u_{14} = 54$ (\Rightarrow $n = 505$ (\uparrow (4)
0.5	0.5	$S_n = 2n^2 - 2 \qquad (5)$
0.5	0.5	$n=7$ يعني $n^2-49=0$ يعني $2n^2-2=96$ (6
		التمرين الثالث: (08 نقاط)
2	1×2	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty $ (1
	01.5	$f'(x) = 6x^2 + 6x$ (1 (2)
03.5	0.5	f'(x) اشارة
	3x0.5	ب) حساب القيمتين وتشكيل جدول التغيرات
Λ1	20.7	3) التحقق
01	2×0.5	ب) تعيين نقطة التقاطع مع حامل محور الفواصل
0.5	×0.25	4 – نقطة الإنعطاف
	2	– معادلة المماس
0.75	×0.25	$\left(C_{f} ight)$ انشاء المماس والمنحنى (5
0.25	0.25	6) حل المتراجحة
		0) كل المراجعة