الأستاذ: حليب عبد القادر

المستقدمات المقارية الموازية لحاملي محوري الإحداثيات

	— <i>اسي اسرر</i> ي او ساج	•••	7.5-1-7.	(1
معادلة المقارب	النهاية		معادلة المقارب	النهاية
x = a	$ \lim_{x \to a} f(x) = +\infty $		y = b	$\lim_{x \to \pm \infty} f(x) = b$
	$ \lim_{x \to 2} f(x) = -\infty $			$\lim_{x \to +\infty} f(x) = 3$
	$\lim_{\stackrel{<}{x\to 0}} f(x) = +\infty$			$\lim_{x \to -\infty} f(x) = 0$
	$\lim_{\stackrel{>}{x\to -1}} f(x) = +\infty$			$\lim_{\to -\infty} f(x) = -2$

معادلة المقار ب	النهاية	معادلة المقارب	النهاية
x = a	$ \lim_{x \to a} f(x) = +\infty $	y = b	$\lim_{x\to\pm\infty}f(x)=b$
	$ \lim_{x \to 2} f(x) = -\infty $		$\lim_{x\to +\infty} f(x) = 3$
	$\lim_{\stackrel{<}{x\to 0}} f(x) = +\infty$		$\lim_{x\to -\infty} f(x) = 0$
	$\lim_{\stackrel{>}{x\to -1}} f(x) = +\infty$		$\lim_{x\to\infty}f(x)=-2$

في كل مما يأتي أحسب f(x) ا $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ ثم فسر النتيجة بيانيا

$$f(x) = \frac{x+2}{3-x}$$
 (2 $f(x) = \frac{2x-1}{x+1}$ (1

$$f(x) = \frac{1-x}{x^2+2x}$$
 (4 • $f(x) = \frac{-3x^2-x}{x^2+1}$ (3

في كل مما يأتي أحسب $f(x) = \lim_{\substack{x \to a \ x \to a}} f(x)$ و $\lim_{x \to a} f(x)$ ثم فسر النتيجة بيانيا

$$a=3$$
 $f(x)=\frac{x+2}{3-x}$ (2 $a=1$) $f(x)=\frac{2x^2+1}{x-1}$ (1)

$$a = 0$$
 و $f(x) = \frac{2x-3}{x}$ (4 • $a = 2$ و $f(x) = \frac{-3x+2}{(2-x)^2}$ (3

$$a = \pm 2$$
 $f(x) = \frac{x+1}{x^2 - 4}$ (5

المستقيم المقارب المائل

$$(C_f)$$
 فان المنحنى $\lim_{x\to+\infty} \left[f(x) - (ax+b) \right] = 0$ إذا كانت $y=ax+b$: يقبل مستقيم مقارب مائل معادلة له

تطبيق: استنتج معادلة المستقيم المقارب في الحالات التالية: $\lim_{x \to +\infty} [f(x) - 2x + 3] = 0 \cdot \lim_{x \to -\infty} [f(x) - (3x - 1)] = 0$

$$\lim_{x \to +\infty} \left[f(x) + \left(-2x + 1 \right) \right] = 0 \quad \cdot \qquad \lim_{x \to +\infty} \left[f(x) + x \right] = 0$$

2ثانوي

$$\lim_{x \to +\infty} \left[f(x) - \left(3x + 2\right) \right] = -1 \quad \text{`} \quad \lim_{x \to -\infty} \left[f(x) - 3x \right] = 1$$

ملاحظة : إذا كانت:
$$c$$
 فان $\lim_{x\to+\infty} \left[f(x) - (ax+b) \right] = c$ فان

بجوار y = ax + b + c : بجوار المائل هي y = ax + b + c

 $\left(C_{f}
ight)$ في كل مما يأتي بين أن المستقيم $\left(\Delta
ight)$ مستقيم مقارب لـ (Δ) : y = -2x + 3 $f(x) = -2x + 3 + \frac{x}{x^2 - 1}$

$$(\Delta): y = 2x+1$$
 $f(x) = \frac{2x^2 - x + 1}{x - 1}$

(
$$\Delta$$
): $y = x$ $f(x) = \frac{x^3 - x + 1}{x^2 + 2}$

$$(\Delta): y = -x + 2 \quad f(x) = \frac{x + 2}{-x^2 + x + 1}$$

افان $\lim_{x \to a} g(x) = 0$ و f(x) = ax + b + g(x) فان المستقيم ذا المعادلة : y = ax + b مقارب بجوار y = ax + b

 $\left(C_{f}\right)$ لمستقیم المقارب لـ $\left(\Delta\right)$ المستقیم المقارب المورب لـ $\left(1\right)$ مع التعليل ، ثم ادرس وضعية (C_f) بالنسبة إلى (Δ) .

$$f(x) = 2x - 1 - \frac{1}{x+1}$$
 (2 · $f(x) = -2x + 3 + \frac{x}{x^2 - 1}$ (1)

$$f(x) = 3x + 1 + \frac{-x+1}{x^2 + 2}$$
 (4 $f(x) = 1 + \frac{1}{x+2}$ (3

$f(x) = -x + 1 + \frac{4}{2 - x}$ (6 $f(x) = x + \frac{x + 1}{x^2 + 1}$ (5

ن مما يأتي عين الأعداد الحقيقية $c\ a$, ثم استنتج أن (2)يقبل مستقيما مقاربا مائلا يطلب إعطاء معادلة له $(C_{\,f})$

$$f(x) = \frac{x^2 - 8x + 16}{x - 3} = ax + b + \frac{c}{x - 3}$$

$$f(x) = \frac{x^2 - 4x + 16}{x - 1} = ax + b + \frac{c}{x - 1}$$

$$f(x) = \frac{2x^2 + x + 1}{x + 1} = ax + b + \frac{c}{x + 1}$$

$$f(x) = \frac{x^2 - 2x - 1}{x - 2} = ax + b + \frac{c}{x - 2}$$

$$f(x) = \frac{x^2 + 3x}{2 - x} = ax + b + \frac{c}{2 - x}$$

$$f(x) = \frac{3x^2 + 2x}{x^2 - 3x - 4}$$
: $D = \mathbb{R} - \{-1, 4\}$ الدالة المعرفة على f

$$D$$
 من a وجد الأعداد الحقيقية a ، a و a حيث من اجل كل a من a $f(x) = a + \frac{b}{x+1} + \frac{c}{x-4}$

2- ادرس نهایات الداله f عند حدود مجالات مجموعهٔ التعریف

$$f\left(x\right) = 3x + \frac{2x+1}{x-2}$$
: $\mathbb{R} - \{2\}$ الدالة المعرفة على f

$$\lim_{x \to -\infty} [f(x) - 3x] = \lim_{x \to +\infty} [f(x) - 3x] - 1$$

$$(C_f)$$
 استنتج وجود مقارب مائل لـ (C_f)

التمرين 03 معرفة على
$$\mathbb{R} - \{3\}$$
 كما يلي : f دالة معرفة على f $f(x) = \frac{x^2 - 8x + 16}{x - 3}$

تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس (C_f)

: حيث a;b;c حيث عين الأعداد الحقيقية

$$f(x) = ax + b + \frac{c}{x-3}$$
: $\mathbb{R} - \{3\}$ من اجل کل x من اجل

ب- احسب نهایات للدالة f عند حدود مجموعة التعریف ، ثم فسر النتائج هندسيا .

 $\left(C_{f}
ight)$ لذي معادلته :y=x-5 مقارب مائل لـ $\left(\Delta
ight)$ مقارب مائل لـ -2

ا درس وضعية (C_f) بالنسبة إلى (Δ) .

f ادر س اتجاه تغیر الدالة f ، ثم شکل جدول تغیر اتها .

. به انتج نستنتج و باک ، f(6-x)+f(x) ، ماذا تستنتج

 $(C_{_f}), (\Delta)$ ارسم (Δ)

m عدد حلول المعادلة عدد الحقيقى عدد حلول المعادلة

 $f(x) = \frac{x^3 - 3x^2 + 3x - 3}{(x - 1)^2}$ بـ: $\mathbb{R} - \{1\}$ لتكن الدالة f المعرفة على

و (C) تمثیلها البیانی

. أ- احسب نهايات الدالة f عند حدود مجموعة التعريف (1

(C) ب- استنتج المستقيمات المقاربة للمنحنى

بین أنه توجد ثلاثة أعداد حقیقیة a و b حیث من أجل (2

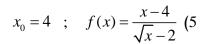
 $f(x) = x + a + \frac{b}{x-1} + \frac{c}{(x-1)^2} : x \neq 1$ کل عدد حقیقي

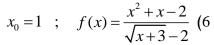
)بين أن المنحنى (C) يقبل مستقيما مقاربا مائلاً يطلب تعيين معادلة له.

y = x + 1: ليكن d المستقيم الذي معادلته (4

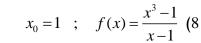
d و المستقيم d و المستقيم -عين نقط تقاطع المنحنى

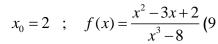
التمرين 33 ص 135 التمرين 33 ص 135


احسب نهایة f عند x_0 عند عند الحالات التالیة:


$$x_0 = 0$$
 ; $f(x) = \frac{x^2 - x}{3x^2 - x}$ (1)

$$x_0 = 2$$
 ; $f(x) = \frac{x^2 - 5x + 6}{x^2 - x + 2}$ (2)


$$x_0 = 1$$
 ; $f(x) = \frac{(x-1)(2x-3)}{x^2-1}$ (3


$$x_0 = 1$$
 ; $f(x) = \frac{\sqrt{x} - 1}{x - 1}$ (4

$$x_0 = 3$$
; $f(x) = \frac{\sqrt{x+1-2}}{(x^2-9)^2}$ (7

$$x_0 = 0$$
 ; $f(x) = \frac{\sqrt{x+1} - x}{x^2 - x}$ (10)

$$x_0 = 1$$
 ; $f(x) = \frac{\sqrt{x+1} - x}{x^2 - x}$ (11)

كيف تطرح أسئلة المستقيم المقارب المائل

 $f\left(x\right) = \frac{2x^2 - x + 1}{x - 1}$ الدالة المعرفة على $\mathbb{R} - \{1\}$ كما يلي f $\left(C_{f}\right)$ بين أن المستقيم الذي معادلته y=2x+1 مقارب مائل لـ y=2x+1

.....

 $f\left(x
ight)=x-1+rac{4}{x+4}$: بالدالة المعرفة على $\left\{C_f
ight)$ بالدالة المعرفة على y=x-1 بين أن المستقيم الذي معادلته y=x-1 مقارب مائل لـ y=x-1

 $f\left(x\right)=3x-1+rac{1}{2-x}\,:\,\mathbb{R}-\{2\}$ الدالة المعرفة على f

奥然奥

 $f(x) = \frac{x^2 - 3x + 1}{-x + 2}$: $\mathbb{R} - \{2\}$ الدالة المعرفة على f

 $\lim_{x\to -\infty} \left[f\left(x\right) + x - 1\right]$ و $\lim_{x\to +\infty} \left[f\left(x\right) + x - 1\right]$ - 1 - 1 - 1 - 1 - 2 - فسر النتائج هندسا (استنتج وجود مقارب مائل لـ $\left(C_f\right)$ - شر

 $f(x) = 3x + \frac{2x+1}{x-2}$: $\mathbb{R} - \{2\}$

 $\lim_{x \to -\infty} \left[f(x) - 3x \right] \quad \lim_{x \to +\infty} \left[f(x) - 3x \right] \quad -1$ (C_f) ۔ فسر النتائج هندسا (استنتج وجود مقارب مائل لـ (C_f)

قائمة درس محور النهايات بالترتيب و الأمثلة

