

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة ، لغات أجنبية

المدة: 02 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (06 نقاط)

b=1444 و a=2023 : و a=1444 و a=2023

5 على a عين باقي القسمة الإقليدية لكلّ من العددين a و b على (1

5 على $a^3 + b^2 + 2$ على إلى المتنتج باقي القسمة الإقليدية للعدد $a^3 + b^2 + 2$

b = -1[5] بيّن أنّ: (2)

5 يقبل القسمة على $b^{2024}-1$ يقبل القسمة على 5

 $b^{2n} \equiv 1$ [5] ، استنتج أنّه: من أجل كلّ عدد طبيعي (3

 $a+b^{2n}-bn\equiv 0$ [5] عيّن قيم العدد الطبيعي n التي من أجلها يكون:

التمرين الثاني: (06 نقاط)

 $u_n = 5n - 2$: المتتالية العددية المعرّفة على المتتالية العددية المعرّفة المعرّفة على المتتالية العددية المعرّفة المع

 u_2 9 u_1 , u_0 + u_0 (1)

اً بيّن أنّ المتتالية (u_n) حسابية يُطلب تعيين أساسها. ((2

 (u_n) استنتج اتجاه تغیّر المتتالیة (ب

بيّن أنّ العدد 2023 حدّ من حدود المتتالية (u_n) ثمّ استنتج رتبته.

 $u_0 + u_1 + \dots + u_{405} = 410263$:تحقِّق أنّ (4

 $v_{10}=48$ و $v_3=13$:حيث: r وأساسها v_0 وأساسها v_0 و المعرّفة على \mathbb{N} بحدّها الأول والمعرّفة على $v_3=13$

 u_0 أساس المتتالية $\left(v_n \right)$ وحدّها الأول أ

n بدلالة ب v_n بدلالة عين عبارة الحدّ العام

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة ، لغات أجنبية / بكالوريا 2023

التمرين الثالث: (08 نقاط)

$$f(x) = \frac{1}{3}x^3 - x^2$$
 بـ: \mathbb{R} بنددية المعرّفة على f

 $\left(O; \overrightarrow{i}, \overrightarrow{j} \right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f \right)$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$$
 | lim $f(x)$ | lim $f(x)$ | length |

$$f'(x) = x(x-2)$$
، من أجل كلّ عدد حقيقي أنّه: من أجل كلّ عدد الم

$$[2;+\infty[0]]$$
 ستنتج أنّ الدالة f متزايدة تماما على كلّ من المجالين f و $[0;2]$ و متناقصة تماما على المجال $[0;2]$

f شكّل جدول تغيّرات الدالة f

المماس المنحني (
$$C_f$$
) عند النقطة ذات الفاصلة (T) المماس المنحني (T) عند النقطة ذات الفاصلة (T)

$$(T)$$
تحقّق أنّ: $y = -x + \frac{1}{3}$ معادلة لـ

$$f(x) = \frac{1}{3}(x-3)x^2$$
 ، x عدد حقیقی عدد من أجل كلّ عدد (**4**

$$f(x) = 0$$
 المعادلة \mathbb{R} حلّ في

. استنتج إحداثيي نقطتي تقاطع المنحني
$$\left(C_{f}
ight)$$
 مع حامل محور الفواصل

$$\left(C_{f}
ight)$$
 وارسم $\left(T
ight)$ وارسم $\left(f(-2)
ight)$ وارسم (5

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة ، لغات أجنبية / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (06 نقاط)

b=2024 و a=1945 : و a=1945 و a=1945 و a=1945

من باقى القسمة الإقليدية لكلّ من العددين
$$a$$
 و b على 7 أ $(1$

$$a = -1[7]$$
:بيّن أنّ

ريد 7 متوافقان بترديد
$$b^2$$
 استنتج أنّ العددين a^2

7 يقبل القسمة على
$$a^2 + b^2 - 2$$
 بيّن أنّ العدد (3

$$a^{2n} \equiv 1$$
 من أجل كلّ عدد طبيعي (أ (4) أبيّن أنّه: من أجل كلّ عدد طبيعي

$$a^{2n}+bn+1\equiv 0$$
 [7] عيّن قيم العدد الطبيعي n التي من أجلها يكون:

التمرين الثاني: (06 نقاط)

$$u_2+u_3=60$$
 و $q=2$:حيث q وأساسها q وأساسها q على \mathbb{N} بحدّها الأول u_0

$$u_0 = 5$$
: بيّن أنّ (1

$$n$$
 بدلالة u_n بدلالة عين عبارة الحدّ العام (أ (3

$$u_{n+1} - u_n = 5 \times 2^n$$
 ، n عدد طبیعی عدد من أجل كلّ عدد عبين أنّه: من أجل كلّ

باستنتج أنّ
$$(u_n)$$
 متزایدة تماما.

$$u_0 + u_1 + \dots + u_n = 5 \times 2^{n+1} - 5$$
 ، n عدد طبیعي (4

التمرين الثالث: (08 نقاط)

$$g(x) = -x^3 + 3x + 2$$
 بـ: \mathbb{R} بـن المعرّفة على g

$$\left(0; \overrightarrow{i}, \overrightarrow{j}
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{g}
ight)$

$$\lim_{x \to +\infty} g(x) \quad \lim_{x \to -\infty} g(x) \quad \text{(1)}$$

$$g'(x) = -3(x-1)(x+1)$$
 ، x عدد حقیقی عدد حقیقی أنّه: من أجل كلّ عدد حقیقی (1

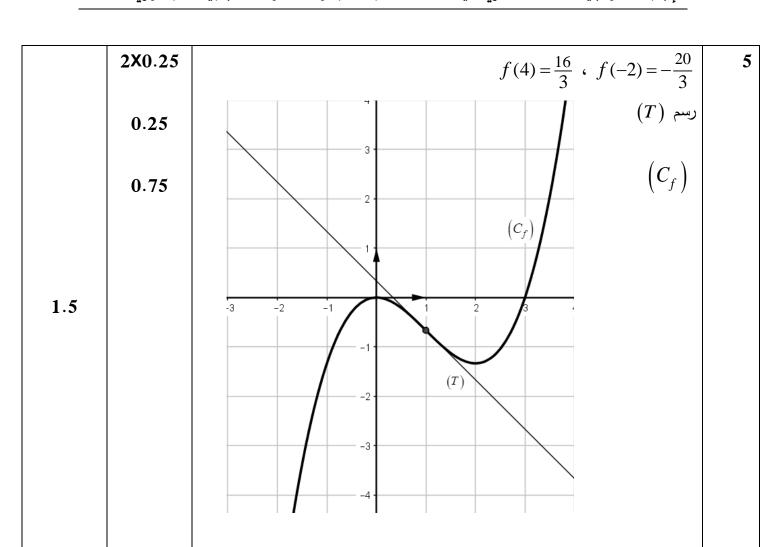
$$[1;+\infty[$$
 و $]-\infty;-1]$ استنتج أنّ الدّالة g متناقصة تماما على كلّ من المجالين $[-1;1]$ ومتزايدة تماما على المجال $[-1;1]$

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة ، لغات أجنبية / بكالوريا 2023

$$g(x) = (2-x)(x+1)^2$$
 ، x عدد حقیقی عدد من أجل كل عدد من أجل كل عدد عقیقی (أ (3

$$g(x) = 0$$
 المعادلة \mathbb{R} حلّ في

ج) عيّن إحداثيات نقط تقاطع المنحنى
$$\left(C_{g}
ight)$$
 مع حاملي محوري الإحداثيات.


$$0$$
 المماس للمنحني $\left(C_{g}
ight)$ عند النقطة ذات الفاصلة (T) المماس للمنحني عند النقطة فالمحاصلة (T

$$(T)$$
تحقّق أنّ: $y = 3x + 2$ معادلة لـ

$$\left(C_{g}
ight)$$
 ورسم $\left(T
ight)$ وارسم $\left(g(2), g(-2), g(-2)\right)$ احسب (5

العلامة			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		التمرين الأول (06 نقاط)	
3.5	2	3) باقي القسمة الإقليدية للعدد $lpha$ على 5 هو (أ	1
		باقي القسمة الإقليدية للعدد b على 5 هو 4	
3.3		a^3+b^2+2 على 5 هو a^3+b^2+2 باقي القسمة الإقليدية للعدد	
	3x0.5	$a^3 + b^2 + 2 = 0[5]$ $b^2 = 1[5]$ $a^3 = 2[5]$	
		$b\equiv -1$ [5] تبیان أن (أ	2
1.5	0.5	$b\equiv -1$ [5] اِذْن $b\equiv 4$ [5]	
1.5	2x0.5	$b^{2024}-1$ يقبل القسمة على 5 بالتحقّق أنّ العدد	
		$b^{2024} - 1 \equiv 0[5] \cdot b^{2024} \equiv (-1)^{2024}[5] \cdot b \equiv -1[5]$	
	0.5	$b^{2n} \equiv 1$ [5] ، n عدد طبیعي (أ) استنتاج أنّه: من أجل كلّ عدد طبیعي	3
1		b^{2n} \equiv $1[5]$ ومنه b \equiv $-1[5]$	
		$a+b^{2n}-b$ $n\equiv 0$ [5] :ب التي من أجلها يكون n التي من أجلها يكون	
	2x0.25	و k عدد طبیعي $n=5k+1$ ، $n+4\equiv 0$ [5]	
		التمرين الثاني (06 نقاط)	
1.5	3x0.5	$u_2 = 8$ $u_1 = 3$ $u_0 = -2$	1
	2x0.5	r تبيان أنّ (u_n) حسابية وتعيين أساسها r	2
1.5		$r = 5 u_{n+1} - u_n = 5$	
	0.5	(u_n) استنتاج اتجاه تغیّر المتتالیة (u_n) متزایدة تماما $r=5$	
		بدل (u_n) مدریده نمام $r=3$	

1	2x0.5	تبيان أنّ 2023 حدّ من حدود المتتالية (u_n) ثمّ استنتاج رتبته	3
		$u_n = 5n - 2$ تكافئ $u_n = 405$ رتبته $u_n = 5n - 2$	
1	20 5	$u_0^{} + u_1^{} + \dots + u_{405}^{} = 410263$ التحقّق أنّ	4
	2x0.5	$u_0 + u_1 + \dots + u_{405} = 410263$ $u_0 + u_1 + \dots + u_{405} = \frac{406}{2} (-2 + 2023)$	
	2x0.25	v_0 أساس المتتالية (v_n) وحدّها الأول (أ	5
1		$v_0 = -2 \text{or} r = 5$	
	0.5	$v_n = 5n-2$: n بدلالة v_n بدلالة باتعيين عبارة الحدّ العام	
التمرين الثالث (08 نقاط)			
1	2X0.5	$\lim_{x \to +\infty} f(x) = +\infty \mathbf{g} \lim_{x \to -\infty} f(x) = -\infty$	1
	0.75	$f'(x) = x^2 - 2x$ ، x عدد حقیقی x ،	2
	0.25	f'(x) = x(x-2) ، من أجل كلّ عدد حقيقي x	
	0.5	$x \to 0$ 0 0 0 0 0 0 0 0 0	
	0.5	الدالة f متزايدة تماما على كلّ من المجالين $[0;+\infty[$ و $]-\infty;0]$	
3		ومتناقصة تماما على المجال [0; 2]	
	1	$x \to 0$ 2 $+\infty$ $f'(x)$ + $-$ 0 + $f(x)$ f	
_		(T) التحقّق أنّ: $y = -x + \frac{1}{3}$ معادلة لـ	3
1	2×0.5	$y = -x + \frac{1}{3}$ و منه $y = f'(1)(x-1) + f(1)$	
	0.5	$f(x) = \frac{1}{3}(x-3)x^2$ ، x عدد حقیقي و اُنه: من أجل كل عدد حقیقي (أ	4
1.5	0.5	$f(x) = 0$ المعادلة \mathbb{R} المعادلة	
		x = 3 تكافئ $x = 0$ أو $x = 0$	
	2X0.25	(3;0) مع حامل محور الفواصل هما $(0;0)$ و (3;0) جـ) إحداثيي نقطتي تقاطع	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

العلامة						
مجموع	مجزأة		عناصر الإجابة (الموضوع الثاني)			
التمرين الأول (06 نقاط)						
			7 على a و b على أ b على أ a	1		
	1		باقي القسمة الإقليدية للعدد a على 7 هو			
2.5	1		باقي القسمة الإقليدية للعدد b على 7 هو 1			
	0.7		a = -1[7] :تبیان أنّ			
	0.5		$a\equiv -1$ [7] اذن $a\equiv 6-7$ ومنه $a\equiv 6$ ادینا			
			a^2 استنتاج أنّ العددين a^2 و b^2 متوافقان بترديد	2		
1.5	2X0.75		$b^2 \equiv 1[7]$ و $a^2 \equiv 1[7]$			
	270.73					
0.5			7 تبيان أنّ العدد a^2+b^2-2 يقبل القسمة على	3		
0.5	0.5		$a^2 + b^2 - 2 = 0[7]$			
	0.5		$a^{2n} \equiv 1$ را تبیان أنّه: من أجل كلّ عدد طبیعی n عدد (أ	4		
			$a^{2n}\equiv 1$ اذن من أجل كلّ عدد طبيعي $a^{2n}\equiv 1$ اذن من أجل كلّ عدد طبيعي $a^{2n}\equiv 1$	7		
		a^{2n}	$+bn+1\equiv 0$ [7] تعيين قيم العدد الطبيعي n التي من أجلها يكون:			
1.5						
	0.5		$1+ n+1 \equiv 0$ [7] تكافئ $a^{2n} + bn+1 \equiv 0$ [7]			
	0.5		$n \equiv 5 \ [7]$ تكافئ			
	0.3		ومنه $n=7k+5$ حيث k عدد طبيعي $n=7k+5$			
			التمرين الثاني (06 نقاط)			
1			$u_0 = 5$ تبيان أنّ	1		
	0.5		$u_0 q^2 + u_0 q^3 = 60$ تكافئ $u_2 + u_3 = 60$			
	0.5		$u_0 = 5$ و منه $2u_0 = 60$			

1	2x0.5	$u_6=320$ ، u_6 هو a_6 الحدّ الذي رتبته $a_6=320$	2
3		n بدلالة u_n بدلالة u_n	3
	2x0.5	$u_n = 5 \times 2^n \cdot u_n = u_0 q^n$	
	1	$u_{n+1}-u_n=5 imes 2^n$ ، n عدد طبیعي عدد طبیعي بیان أنّه: من أجل كلّ عدد طبیعي	
	1	استنتاج أنّ (u_n) متزايدة تماما (ج	
		من أجل كلّ عدد طبيعي n ، $0 < 2^n > 1$ اذن (u_n) متزايدة تماما.	
1		$u_0+u_1+\dots+u_n=5 imes 2^{n+1}-5$ ، n تبیان أنّه: من أجل كلّ عدد طبیعي	4
1	2x0.5	$u_0 + u_1 + \dots + u_n = 5 \times 2^{n+1} - 5$ $u_0 + u_1 + \dots + u_n = u_0 \frac{q^{n+1} - 1}{q - 1}$	
التمرين الثالث (08 نقاط)			
1	2x0.5	$\lim_{x \to +\infty} g(x) = -\infty \lim_{x \to -\infty} g(x) = +\infty$	1
	2x0.5	$g'(x) = -3(x-1)(x+1)$ و $g'(x) = -3x^2 + 3$ ، ک عدد حقیقی $g'(x) = -3x^2 + 3$ و أجل كل عدد حقیقي	2
	0.5	و' (x) إشارة	
	0.5	$[1;+\infty[$ و $]-\infty;-1]$ الدّالة g متناقصة تماما على كلّ من المجالين	
3	0.5	[-1;1] ومتزايدة تماما على المجال	
	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0.5	$g(x) = (2-x)(x+1)^2$ ، عدد حقیقی ه عدد حقیقی و التحقق اُنّه: من أجل كلّ عدد حقیقی	3
1.75	0.5	$g(x)=0$ المعادلة \mathbb{R} المعادلة	
		x=2 گو $x=-1$ گو $g(x)=0$	
	2×0.25	ج) تعيين إحداثيات نقط تقاطع المنحنى $\left(C_{g} ight)$ مع حاملي محوري الإحداثيات.	
	3x0.25	(0;2) (-1;0) (2;0)	

T			
1		(T)التحقّق أنّ: $y=3x+2$ معادلة لـ	4
1	2x0.5	y = 3x + 2 و منه $y = g'(0)(x - 0) + g(0)$	
	2x0.25	g(2) = 0, $g(-2) = 4$	5
	0.25	(T) (T) رسم (T)	
	0.5	رسم (T) (C_g)	
		$ (C_g)$	
1.25			
		-2 -1 1 3	
		$\begin{pmatrix} -2 & -1 \\ & & \end{pmatrix}$	
		-1	
		-2	
		-3	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيد التام بسلم التنقيط