

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

الحتبار في مادة: الرياضيات المدة: 40 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول الموضوع الأول (04 نقاط)

يحتوي كيس على 8 كربات متماثلة ولا نفرّق بينها باللّمس، موزعة كما يلي:

3 كربات بيضاء مرقمة بـ: 1 ، 1 ، 0 و 3 كربات حمراء مرقمة بـ: 1 ، 1 ، 2

و كريتين خضراوين مرقمتين بـ: 2 ، 2

نسحب عشوائيا وفي آن واحد كريتين من الكيس ونعتبر الحوادث C ، B ، A الآتية:

" الحصول على كريتين من نفس اللون " B ، " الحصول على كرية حمراء على الأقل A

" كا الحصول على كريتين تحملان رقمين مجموعهما يساوي $^{\prime\prime}$ $^{\prime\prime}$

 $\frac{9}{14}$ يساوي B وأنّ احتمال الحدث A يساوي أنّ احتمال الحدث B يساوي (أ (1

P(C) احسب الاحتمال (ب

2) نعتبر المتغيّر العشوائي X الذي يرفق بكلّ عملية سحب لكريتين مجموع الرقمين المسجلين عليهما.

 $\{1;2;3;4\}$ هي X المتغيّر العشوائي المجموعة قيم المتغيّر العشوائي

E(X) عيّن قانون احتمال المتغيّر العشوائي X ثم احسب أمله الرياضياتي E(X)

التمرين الثاني: (04 نقاط)

 $u_{n+1} = \frac{2}{3}u_n + 1$ ، n ومن أجل كلّ عدد طبيعي $u_0 = 1$: المنتالية العددية المعرّفة ب $u_0 = 1$

 $u_n < 3$ ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

بیّن أنّ (u_n) متزایدة تماما.

 $v_n = u_n - 3$ بـ بـ المتتالية العددية المعرّفة على المتتالية العددية المعرّفة العددية العد

 v_0 أ) بيّن أنّ المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ يُطلب تعيين حدّها الأول

 $u_n = -2\left(\frac{2}{3}\right)^n + 3$ ، n عيّن عبارة الحدّ العام v_n بدلالة v_n ثمّ استنتج أنّه: من أجل كلّ عدد طبيعي v_n الحسب v_n احسب v_n

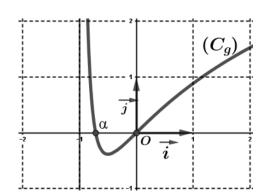
 $T_n = u_0 + u_1 + \dots + u_n$ و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4

 $T_n = 3n - 3 + 4\left(\frac{2}{3}\right)^n$ دسب S_n بدلالة S_n بين أنّه: من أجل كلّ عدد طبيعي S_n

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2023

التمرين الثالث: (05 نقاط)

مين حسب قيم العدد الطبيعي
$$n$$
 بواقى القسمة الإقليدية للعدد 2^n على 7 أين حسب قيم العدد الطبيعي n


$$1962n + 1444^{3n+1} \equiv 0$$
 [7] عيّن قيم العدد الطبيعي n التي من أجلها يكون:

$$y$$
 و x نعتبر المعادلة $x - 6y = 4 \cdots (E)$ نعتبر المعادلة (2)

تحقّق أنّ الثنائية (4;4) حلّ للمعادلة (E) ثمّ استنتج مجموعة حلولها.

$$2^{3x}+2^y\equiv 3$$
[7] من الأعداد الطبيعية حلول المعادلة (E) عين الثنائيات ($x;y$) من الأعداد الطبيعية حلول المعادلة

التمرين الرابع: (07 نقاط)

$$g(x) = 2\ln(x+1) - \frac{x}{x+1}$$
 بـ: $g(x) = 2\ln(x+1) - \frac{x}{x+1}$ بـ: $g(x) = 2\ln(x+1) - \frac{x}{x+1}$ بـ: $g(x) = 2\ln(x+1) - \frac{x}{x+1}$

تمثیلها البیاني، یقطع حامل محور الفواصل في النقطتین اللتین (C_g) فاصلتاهما α و α (لاحظ الشكل المقابل)

$$g\left(x
ight)$$
 بقراءة بيانية ، حدّد حسب قيم x إشارة (1

$$-0.72 < \alpha < -0.71$$
: تحقّق أنّ (2

$$f(x) = (2x+3)\ln(x+1) - 3x$$
 بادّالة المعرّفة على المجال $f(x) = (2x+3)\ln(x+1) - 3x$ بادّالة المعرّفة على المجال $f(x) = (2x+3)\ln(x+1) - 3x$

(عدة الطول) ($O; ec{i}, ec{j}$) وحدة الطول) (عدم المتعامد والمتجانس (C_f) وحدة الطول (C_f)

النتيجة هندسيا. ا
$$\lim_{x \to -1} f(x)$$
 احسب (أ (1

$$\cdot$$
] -1 ; $+\infty$ [نّه من أجل كلّ عدد حقيقي غير معدوم x من المجال عدد حقيقي غير معدوم

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{id} \quad \text{f}(x) = x \left[\left(2 + \frac{3}{x} \right) \ln(x+1) - 3 \right]$$

$$f'(x) = g(x)$$
 ، $]-1;+\infty[$ من المجال عدد حقيقي x من المجال عدد عقيقي (1) عدد عقيقي (2)

$$[0\,;+\infty[$$
و $]-1\,;lpha$ ا ستنتج أنّ f متناقصة تماما على $[lpha\,;0]$ ومتزايدة تماما على كلّ من المجالين و $[lpha\,;0]$

$$f$$
 شكّل جدول تغيّرات الدّالة f

(
$$f(\alpha) \simeq 0.2$$
 و $f(4) \simeq 5.7$ ، $f(3) \simeq 3.5$: المجال $\left[-1;4\right]$ و $\left[-1;4\right]$ و (3) (3) ارسم (C_f) ارسم (C_f) ارسم (C_f) ارسم (C_f) المجال (C_f)

ب عيّن بيانيا قيم الوسيط الحقيقي
$$m$$
 التي من أجلها تقبل المعادلة $f\left(x
ight)=m$ ثلاثة حلول بالضبط.

$$F(x) = (x^2 + 3x + 2) \ln(x+1) - 2x^2 - 2x$$
 بـ : $]-1;+\infty[$ با الدّالة المعرّفة على المجال $F(x) = (x^2 + 3x + 2) \ln(x+1) - 2x^2 - 2x$

$$]-1;+\infty[$$
 على المجال f أصلية للدّالة المجال f أصلية الدّالة المجال المجال

ب) استنتج بالسنتيمتر المربّع
$${\mathcal A}$$
 مساحة الحيّز المستوي المحدّد بالمنحني (C_f) والمستقيمات التي معادلاتها

$$x=0$$
 $y=\alpha$, $y=0$

$$\mathcal{A} = (6\alpha^2 + 4\alpha)cm^2$$
 جـقق أنّ (ج

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (04 نقاط)

يحتوي كيس على 11 كريّة متماثلة ولا نفرّق بينها باللّمس، موزعة كما يلي:

2 كربات تحمل الرقم 0 ، 0 كربات تحمل الرقم 1 و 2 كربات تحمل الرقم 2

نسحب عشوائيا وفي آن واحد كريتين من الكيس ونعتبر الحوادث C ، B ، A الآتية:

" الحصول على كريّة واحدة تحمل رقما عدد أوّلي " B ، " الحصول على كريّة واحدة تحمل رقما فرديا " A

" الحصول على كريتين جُداء رقميهما معدوم $^{\prime\prime}$

 $\frac{24}{55}$ يساوي $\frac{2}{11}$ وأنّ احتمال الحدث $\frac{2}{11}$ يساوي (أ (1

P(C) احسب الاحتمال (ب

2) نعتبر المتغيّر العشوائي X الذي يرفق بكل عملية سحب لكريتين جُداء الرقمين المسجلين عليهما.

 $\{0;1;2;4\}$ هي X هي المتغيّر العشوائي المجموعة قيم المتغيّر العشوائي

E(X) عين قانون احتمال المتغيّر العشوائي X ثم احسب أمله الرياضياتي E(X)

" $e^{X+6} < 2023$ " :حسب احتمال الحدث (ج

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

ب: \mathbb{R} حلّ المعادلة التفاضلية y'=y-2 الذي يحقّق y(0)=1446 هو الدّالة h المعرّفة على y'=y-1

 $h(x) = 1444e^{-x} + 2$ (\Rightarrow $h(x) = 1444e^{x} + 2$ (\Rightarrow $h(x) = 1444e^{x} - 2$ (\Rightarrow

:ساوي $\lim_{x\to+\infty} \left[-x+\ln x-\ln(x+1)\right]$ تساوي (2

 $-\infty$ (\Rightarrow $+\infty$ (\downarrow 0 (\dagger

:ساوي: $I = \int_0^{\ln 2} (e^{-x} + 1) dx$ يساوي: (3

 $-\frac{1}{2} + \ln 2$ ($\frac{1}{2} - \ln 2$ ($\frac{1}{2} + \ln 2$ ($\frac{1}{2} +$

یساوي: $PGCD(2n^2+n; 3n^2+n)$ ، ن أجل كل عدد طبيعي n أكبر تماما من 1 ، (4

 $2n \leftarrow n \leftarrow 1$ (i

التمرين الثالث: (05 نقاط)

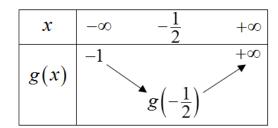
 $u_{n+1}=1-rac{1}{3u_n+1}$ ، n عدد طبيعي عدد $u_0=1$ ومن أجل كلّ عدد $u_0=1$

 $u_n > \frac{2}{3}$ ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

بیّن أنّ (u_n) متناقصة تماما. (2

اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2023

$$v_n = 3 - \frac{2}{u_n}$$
 :ب المتتالية العددية المعرّفة على المتالية (v_n) (3


$$v_0$$
 أي بيّن أنّ المتتالية (v_n) هندسية أساسها أي يُطلب تعيين حدّها الأول أ

$$u_n = \frac{2}{3 - \left(\frac{1}{3}\right)^n}$$
 ، n عيّن عبارة الحدّ العام v_n بدلالة v_n شمّ استنتج أنّه: من أجل كلّ عدد طبيعي v_n الحسب v_n

$$T_n = \frac{2}{u_0} + \frac{2}{u_1} + \dots + \frac{2}{u_n}$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4

$$T_n = 3n + \frac{1}{2} \left[3 + \left(\frac{1}{3} \right)^n \right]$$
 ، n عدد طبيعي n ، n بدلالة n ثمّ بيّن أنّه: من أجل كلّ عدد طبيعي S_n

التمرين الرابع: (07 نقاط)

ب:
$$\mathbb{R}$$
 الجدول المقابل يُمثّل تغيّرات الدّالة g المعرّفة على g (I) الجدول $g(x) = -1 + (2x - 1)e^x$

أثبت أنّ المعادلة
$$g(x)=0$$
 تقبل حلا وحيدا α حيث $0.7 < \alpha < 0.8$

$$\mathbb{R}$$
 على $g\left(x
ight)$ استنتج حسب قيم x إشارة

$$f(x) = -x + 4 + (2x - 3)e^x$$
 بـ: \mathbb{R} بـن الدّالة المعرّفة على f

$$\left(0; \overrightarrow{i}, \overrightarrow{j} \right)$$
 المتعامد والمتجانس وي المنسوب ا

$$\lim_{x \to +\infty} f(x) = +\infty$$
 ثمّ بيّن أنّ: $\lim_{x \to -\infty} f(x)$ احسب (1)

$$-\infty$$
 عند (C_f) عند $y=-x+4$ مقارب مائل Δ عند Δ عند Δ

$$(\Delta)$$
ادرس وضعية (C_f) بالنسبة إلى (Δ

$$f'(x) = g(x)$$
، بین أنّه: من أجل كلّ عدد حقیقی (2) أ

ب) استنتج أنّ
$$f$$
 متناقصة تماما على $]-\infty$; α ومتزايدة تماما على $[lpha ; +\infty [$ ثمّ شكّل جدول تغيّراتها.

له. عادلة اله. يوازي (
$$\Delta$$
) يُطلب تعيين معادلة له. (C_f) أثبت أنّ (C_f) يُطلب تعيين معادلة له.

$$(f(lpha) \simeq 0.1)$$
 و $f(2) \simeq 9.4$: نأخذ (C_f) و (T) ، (Δ) و (T)

جين بيانيا قيم الوسيط الحقيقي
$$m$$
 التي من أجلها تقبل المعادلة $f(x) = -x + m$ عيّن بيانيا قيم الوسيط الحقيقي

$$F(x) = (-2x+5)e^x$$
 بنا الدّالة المعرّفة على \mathbb{R} بنا الدّالة المعرّفة على F

$$\mathbb{R}$$
 على $x\mapsto (-2x+3)e^x$ على أُل تحقّق أنّ F أصلية للدّالة

ب) استنتج مساحة الحيّز المستوي المحدّد بـ
$$(C_f)$$
 والمستقيمات التي معادلاتها

$$x = 0$$
 $y = -x + 4$

الإجابة النموذجية. مادة الرباضيات. الشعبة تقنى رباضى. بكالوربا 2023

	2023 4	الشعبة تقني رياضي . بكالو	مادة الرياضيات.	الإجابة النموذجية.	
ä	عنام بالاحادة (العرض والأحل)				
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
التمرين الأول (04 نقاط)					
	0.5 + 0.25		P(A) =	$\frac{C_3^2 + C_3^2 + C_2^2}{C_8^2} = \frac{1}{4} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$	
2	0.5 + 0.25		P(B)=1-B	$P(\overline{B}) = 1 - \frac{C_5^2}{C_8^2} = \frac{9}{14}$	1
	2 × 0.25		P(C)	$C) = \frac{C_5^1 \times C_2^1}{C_8^2} = \frac{5}{14} (\mathbf{y})$	
	0.5		عة {1;2;3;4}	أ) تبرير عناصر المجموء	
2	4 × 0.25	$\begin{array}{c ccc} x_i & 1 & 2 \\ \hline P(X=X) & 5 & 12 \\ \end{array}$	3 4	ب) قانون الاحتمال	2
-	0.5	$P(X = x_i) \qquad \frac{5}{28} \qquad \frac{12}{28}$	$\frac{10}{28}$ $\frac{1}{28}$	$E(X) = \frac{9}{4}$	
		04 نقاط)	التمرين الثاني (
	0.25	· دائية	من صحّة الخاصية الابد	البرهان بالتراجع: التحقق	1
1	0.75	(إثبات أنّ الخاصية وراثية	إثبات صحّة الاستلزام (
0.25	0.25	ومنه (u_n) متزایدة تماما u_{n+1}	$-u_n = -\frac{1}{3}(u_n - 3)$	، $\mathbb N$ من أجل كلّ n	2
	0.75		$v_{n+1} = \frac{2}{3}v_n \cdot \mathbb{N}$	\mathbb{N} من أجل كلّ n من	
	0.25			$v_0 = -2$	
1.75	2 × 0.25	$u_n = -2\left(\frac{2}{3}\right)^n + 3 y v_n$	$\frac{1}{n} = -2\left(\frac{2}{3}\right)^n$ ، n يعي	ب) من أجل كلّ عدد طبب	3
	0.25		$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$	$\lim_{n\to+\infty}u_n=3$ (ج	
	0.75		$S_n = v_0 \frac{1 - q^{n+1}}{1 - q}$	$=-6\left[1-\left(\frac{2}{3}\right)^{n+1}\right]$	4
1	0.25	$T_n = S_n + 3(n+1) = -6$	$\left[1 - \left(\frac{2}{3}\right)^{n+1}\right] + 3n +$	$3 = 3n - 3 + 4\left(\frac{2}{3}\right)^n$	

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

التمرين الثالث (05 نقاط)				
	2 × 0.75	$2^{3} \equiv 1[7]$, $2^{2} \equiv 4[7]$, $2^{1} \equiv 2[7]$, $2^{0} \equiv 1[7]$ (if $k \in \mathbb{N}$ $\begin{bmatrix} n & 3k & 3k+1 & 3k+2 \\ 2^{n} \equiv & 1 & 2 & 4 & [7] \end{bmatrix}$	1	
3	3 × 0.25	$1444^{2023} \equiv 2[7]$ ومنه $[3] \equiv 123 \equiv 1$ ومنه وعليه (ب) لدينا		
	0.25	$1444^{3n+1} = 2[7]$ و $2n[7]$ و $1962n = 2n[7]$		
	0.25	n \equiv 6 $\begin{bmatrix} 7 \end{bmatrix}$ أي $2n+2$ \equiv 0 $\begin{bmatrix} 7 \end{bmatrix}$ معناه $2n+2$ أي $2n+2$ أي		
	0.25	$lpha\in\mathbb{N}$ مع $n=7lpha+6$ وعليه		
	0.5	(E) لدينا $(4;4)$ ومنه $(4;4)$ ومنه $(4;4)$ حلّ للمعادلة		
1.5	0.5	$7(x-4) = 6(y-4)$ ومنه $\begin{cases} 7x-6y=4\\ 7(4)-6(4)=4 \end{cases}$	2	
	0.5	$\left\{\left(6k+4;7k+4\right)/k\in\mathbb{Z} ight\}$ وباستعمال مبرهنة غوص: مجموعة الحلول هي		
	0.25	$2^k \equiv 1[7]$ معناه $2^{3x} + 2^{7k+4} \equiv 1 + 2^{k+1}[7]$ ومنه $2^{3x} + 2^y \equiv 3[7]$		
0.5	0.25	$(x;y)$ \in $\{(18\lambda+4;21\lambda+4)/\lambda\in\mathbb{N}\}$ ، وعليه $k=3\lambda$	3	
		التمرين الرابع (07 نقاط)		
0.75	0.75	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	(1 (I	
0.5	0.5	$g(-0.71) \approx -0.027$ $g(-0.72) \approx 0.025$	(2	
0.5		$g\left(-0.72\right) \times g\left(-0.71\right) < 0$ ومنه		
	0.25+0.25	(C_f) المستقيم ذو المعادلة $x=-1$ مقارب لـ ا $\lim_{\substack{x \to -1}} f(x) = -\infty$ (أ	(1 (11	
1	0.25+0.25	$\lim_{x \to +\infty} f(x) = +\infty \text{oais} f(x) = x \left[\left(2 + \frac{3}{x} \right) \ln(x+1) - 3 \right] $ (ب)		
2	0.75	$f'(x)=g(x)$ ، $]-1;+\infty[$ من أجل كلّ x من المجال		
	0.25	[lpha;0]ب) متناقصة تماما على		
	0.25	$igl[0;+\inftyigl]$ ومتزایدة تماما علی کلّ من المجالین $igl[-1;lphaigr]$	(2	
	0.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

1	0.75	أ) الرسم: (C _f)	(3	
	0.25	$0 < m < f\left(lpha ight)$ ب) المعادلة $f\left(x ight) = m$ تقبل ثلاثة حلول بالضبط من أجل		
	1	$F'(x) = f(x)$ ' $]-1;+\infty[$ من أجل كلّ x من $]-1;+\infty[$		
1.75	0.25+0.25	$\mathcal{A} = \left[F(0) - F(\alpha) \right] = \left[2\alpha^2 + 2\alpha - \left(\alpha^2 + 3\alpha + 2\right) \ln(\alpha + 1) \right] u.a (\hookrightarrow)$		
	0.25	$\mathcal{A} = (6\alpha^2 + 4\alpha)cm^2$ ومنه: $\ln(\alpha + 1) = \frac{\alpha}{2(\alpha + 1)}$: ج		

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

العلامة		_		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)		
		التمرين الأول (04 نقاط)		
	0.5 + 0.25	$P(A) = \frac{C_5^2}{C_{11}^2} = \frac{2}{11} \ (\hat{1})$	1	
2	0.5 + 0.25	$P(B) = \frac{C_3^2 \times C_8^1}{C_{11}^2} = \frac{24}{55}$		
	2 × 0.25	$P(C) = 1 - \frac{C_8^2}{C_{11}^2} = \frac{27}{55}$ أو $P(C) = \frac{C_3^1 \times C_8^1 + C_3^2}{C_{11}^2} = \frac{27}{55}$ (ب		
	0.5	أ) تبرير عناصر المجموعة {0;1;2;4}		
		ب) قانون الاحتمال		
	4 × 0.25	$x_i $	2	
2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	0.25	$E(X) = \frac{73}{55}$		
	0.25	$P(e^{X+6} < 2023) = P(X=0) + P(X=1) = \frac{6}{11}$ (\Rightarrow)		
		التمرين الثاني (04 نقاط)		
01	0.5 + 0.5	$h(0) = 1446$ و $h(x) = ke^x + 2$ الاقتراح الصحيح هو ب $h(x) = ke^x + 2$	1	
01	0.5 + 0.5	$\lim_{x\to+\infty} \left[-x + \ln x - \ln(x+1) \right] = \lim_{x\to+\infty} \left(-x + \ln \frac{x}{x+1} \right)$ الاقتراح الصحيح هو ج	2	
01	0.5 + 0.5	$I = \int_0^{\ln 2} (e^{-x} + 1) dx = \left[-e^{-x} + x \right]_0^{\ln 2}$ الاقتراح الصحيح هو أ) لأنّ	3	
		الاقتراح الصحيح هو ب) لأنّ $2n+1$ و $3n+1$ أوليّان فيما بينهما	4	
01	01 $PGCD(2n^2+n; 3n^2+n) = n \times PGCD(2n+1; 3n+1)$			
التمرين الثالث (05 نقاط)				
1	0.25 0.75	البرهان بالتراجع: التحقق من صحّة الخاصية الابتدائية إثبات صحّة الاستلزام (إثبات أنّ الخاصية وراثية)	1	
0.5	0.25	$u_{n+1} - u_n < 0$ من أجل كلّ n من أجل كلّ أمان أبد		
J.C	0.25	نستنتج أنّ (u_n) متناقصة تماما		

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

-		,	
2.5	0.75	$v_{n+1} = \frac{1}{3}v_n$ ، $\mathbb N$ من أجل كلّ n من أجل كلّ أ	
	0.25	$v_0 = 1$	
	2 × 0.25	$v_n=v_0 imes q^n=\left(rac{1}{3} ight)^n$ ، $\mathbb N$ من أجل كلّ n من أجل كل	
	2 × 0.25	$u_n = \frac{2}{3 - v_n} = \frac{2}{3 - \left(\frac{1}{3}\right)^n}$	3
	0.5	$\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0 \forall \lim_{n \to +\infty} u_n = \frac{2}{3} (\Rightarrow$	
	0.75	$S_n = v_0 \frac{1 - q^{n+1}}{1 - q} = S_n = \frac{3}{2} \left[1 - \left(\frac{1}{3} \right)^{n+1} \right]$	4
1	0.25	$T_n = 3(n+1) - S_n = 3n + 3 - \frac{3}{2} \left[1 - \left(\frac{1}{3}\right)^{n+1} \right] = 3n + \frac{1}{2} \left[3 + \left(\frac{1}{3}\right)^n \right]$	•
		التمرين الرابع (07 نقاط)	
0.5	2 × 0.25	g مستمرة ومتزايدة تماما على $g(0,7) imes g$ و $g(0,7) imes g$	1 (I
		$(g(0,8) \approx 0.34 \text{ g}(0,7) \approx -0.19)$	
0.75	0.75	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	2
	2 × 0.25	$\lim_{X \to +\infty} f(X) = +\infty \lim_{X \to -\infty} f(X) = +\infty ($	1 (II
	0.25	$\lim_{x \to -\infty} \int f(x) - (-x+4) = 0 (-x+4)$	
		$\left(\Delta ight)$ ج $\left(\Delta ight)$ على $\left(C_f ight): \left[-\infty;rac{3}{2} ight]$ أسفل $\left(\Delta ight)$ أعلى أعلى أعلى $\left(C_f ight): \left(C_f ight): \left(C_f ight)$	
1.5	3 × 0.25	$A\!\!\left(\!rac{3}{2};rac{5}{2} ight)$ في النقطة $\left(\Delta ight)$ في النقطة $\left(C_{\!f} ight)$	

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

	_			
	0.75	f'(x) = g(x) ، x عدد حقیقی أ) من أجل كل عدد حقیقی		
	2 × 0.25	$[lpha;+\infty[$ متناقصة تماما على $]-\infty;lpha$ ومتزايدة تماما على f (ب	2	
1.5	0.25	$egin{array}{c ccccccccccccccccccccccccccccccccccc$		
	0.20	$f(x) = \int_{-\infty}^{+\infty} f(\alpha) dx$		
	2 × 0.25	$y=-x+4-2\sqrt{e}:(T)$ ومعادلة ل $f'(x)=-1$		
		ب) الرسم:		
	0.25	(Δ) رسم (Δ)		
	0.25	رسم (C_f) (T) رسم	3	
1.75	0.50	رسم (C_f)		
		$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & \frac{1}{1} & 0 \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$		
	0.25	$4-2\sqrt{e} < m < 4$ جلّن بالضبط من أجل $f(x) = -x + m$ جا للمعادلة		
	0.5	$F'(x) = (-2x+3)e^x$ ، \mathbb{R} من أجل كلّ x من x		
1	2 × 0.25	$\int_{-1}^{0} \left[\left(-x + 4 \right) - f(x) \right] dx = \left[F(x) \right]_{-1}^{0} = \frac{5e - 7}{e} \ u.a \ \left(-\frac{1}{2} \right) = 5e$		

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط